TDMA - Time Division Multiple Access

Time division multiple access (TDMA) is a channel access method for shared medium networks. It allows several users to share the same frequency channel by dividing the signal into different time slots. The users transmit in rapid succession, one after the other, each using its own time slot. This allows multiple stations to share the same transmission medium (e.g. radio frequency channel) while using only a part of its channel capacity. TDMA is used in the digital 2G cellular systems such as Global System for Mobile Communications (GSM), IS-136, Personal Digital Cellular (PDC) and iDEN, and in the Digital Enhanced Cordless Telecommunications (DECT) standard for portable phones. It is also used extensively in satellite systems, combat-net radio systems, and PON networks for upstream traffic from premises to the operator.


TDMA is a type of Time-division multiplexing, with the special point that instead of having one transmitter connected to one receiver, there are multiple transmitters. In the case of the uplink from a mobile phone to a base station this becomes particularly difficult because the mobile phone can move around and vary the timing advance required to make its transmission match the gap in transmission from its peers.

TDMA characteristics

  • Shares single carrier frequency with multiple users
  • Non-continuous transmission makes handoff simpler
  • Slots can be assigned on demand in dynamic TDMA
  • Less stringent power control than CDMA due to reduced intra cell interference
  • Higher synchronization overhead than CDMA
  • Advanced equalization may be necessary for high data rates if the channel is "frequency selective" and           creates Intersymbol interference
  • Cell breathing (borrowing resources from adjacent cells) is more complicated than in CDMA
  • Frequency/slot allocation complexity
  • Pulsating power envelope: Interference with other devices

TDMA in mobile phone systems


2G systems
Most 2G cellular systems, with the notable exception of IS-95, are based on TDMA. GSM, D-AMPS, PDC, iDEN, and PHS are examples of TDMA cellular systems. GSM combines TDMA with Frequency Hopping and wideband transmission to minimize common types of interference.
In the GSM system, the synchronization of the mobile phones is achieved by sending timing advance commands from the base station which instructs the mobile phone to transmit earlier and by how much. This compensates for the propagation delay resulting from the light speed velocity of radio waves. The mobile phone is not allowed to transmit for its entire time slot, but there is a guard interval at the end of each time slot. As the transmission moves into the guard period, the mobile network adjusts the timing advance to synchronize the transmission.
Initial synchronization of a phone requires even more care. Before a mobile transmits there is no way to actually know the offset required. For this reason, an entire time slot has to be dedicated to mobiles attempting to contact the network (known as the RACH in GSM). The mobile attempts to broadcast at the beginning of the time slot, as received from the network. If the mobile is located next to the base station, there will be no time delay and this will succeed. If, however, the mobile phone is at just less than 35 km from the base station, the time delay will mean the mobile's broadcast arrives at the very end of the time slot. In that case, the mobile will be instructed to broadcast its messages starting nearly a whole time slot earlier than would be expected otherwise. Finally, if the mobile is beyond the 35 km cell range in GSM, then the RACH will arrive in a neighbouring time slot and be ignored. It is this feature, rather than limitations of power, that limits the range of a GSM cell to 35 km when no special extension techniques are used. By changing the synchronization between the uplink and downlink at the base station, however, this limitation can be overcome.

3G systems
Although most major 3G systems are primarily based upon CDMA[citation needed], time division duplexing (TDD), packet scheduling (dynamic TDMA) and packet oriented multiple access schemes are available in 3G form, combined with CDMA to take advantage of the benefits of both technologies.
While the most popular form of the UMTS 3G system uses CDMA and frequency division duplexing (FDD) instead of TDMA, TDMA is combined with CDMA and Time Division Duplexing in two standard UMTS UTRA.

No comments:

Post a Comment